Methods for estimating sparse and large covariance matrices

Covariance and correlation matrices play fundamental roles in every aspect of the analysis of multivariate data collected from a variety of fields including business and economics, health care, engineering, and environmental and physical sciences. High-Dimensional Covariance Estimation provides accessible and comprehensive coverage of the classical and modern approaches for estimating covariance matrices as well as their applications to the rapidly developing areas lying at the intersection of statistics and machine learning.

Recently, the classical sample covariance methodologies have been modified and improved upon to meet the needs of statisticians and researchers dealing with large correlated datasets. High-Dimensional Covariance Estimation focuses on the methodologies based on shrinkage, thresholding, and penalized likelihood with applications to Gaussian graphical models, prediction, and mean-variance portfolio management. The book relies heavily on regression-based ideas and interpretations to connect and unify many existing methods and algorithms for the task.

High-Dimensional Covariance Estimation features chapters on:

  • Data, Sparsity, and Regularization
  • Regularizing the Eigenstructure
  • Banding, Tapering, and Thresholding
  • Covariance Matrices
  • Sparse Gaussian Graphical Models
  • Multivariate Regression

The book is an ideal resource for researchers in statistics, mathematics, business and economics, computer sciences, and engineering, as well as a useful text or supplement for graduate-level courses in multivariate analysis, covariance estimation, statistical learning, and high-dimensional data analysis.

Format
EPUB
Protection
DRM Protected
Publication date
May 28, 2013
Publisher
Collection
Page count
208
Language
English
EPUB ISBN
9781118573662
Paper ISBN
9781118034293
File size
2 MB
EPUB
EPUB accessibility

Accessibility features

  • Table of contents navigation
subscribe

About Us

About De Marque Work @ De Marque Contact Us Terms of use Privacy Policy Feedbooks.com is operated by the Diffusion Champlain SASU company